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TRIANGULAR FACTORIZATION AND INVERSION 

BY FAST MATRIX MULTIPLICATION 

James R. Bunch 

and 

John E. Hopcroft 

1.  INTRODUCTION 

Strassen [31 has given an algorithm using non-commutative 

multiplication which computes the product of two matrices of 

order 2 by 7 multiplications and 18 additions. Thus the product 

k 3 k of two matrices of order m2 could be computed by m 7 multi- 

2 k      k 2 plications and (5+m)m 7 - 6 (in2 )  additions. 

Strassen uses block LDU factorization (Householder [2] , 

p. 126) recursively to compute the inverse of a matrix of order 

k     k 6 3 k    k m2 by in2 divisions, frm 7 - m2 multiplications, and 

G      2 k       k 2 <: r(5+m)m 7 - 7 (m2 )  additions. The inverse of a matrix of 

order n could then be computed by £ 5.64n og2 arithmetic 

operations. 

Let A 

lll 

'21 

'12 

v22 

where A = A 22 

A"1» 

A21 All A12 ' 

I   -A11 A12 

A A"1 A21A11 

and 

lll 

'A 
-1 -A  A'1 A21 All 

A^A A11A12 
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All + All A12 A       A21 All 

A"1   a       a"1 

"  A       A21 All 

a"1  a        A"1 -A11 A12  A 

,-1 

if    A,,    and    A    are non-singular. 

Since the algorithm is applied recursively,   it will fail 

whenever the inversion of a singular principal submatrix in any 

of the reduced matrices is required. 

For example,  the block LDU factorization fails to exist 

for a matrix as simple as 

0 0 0 1 
0 0 10 
0 10 0 
10  0  0 

Every principal submatrix in every reduced matrix is non- 

singular if A is symmetric positive definite, strictly diagonally 

dominant, or irreducibly diagonally dominant (Varga [4], p. 23). 

However, if A is only non-singular, then we must, in general, 

pivot (i.e., interchange rows or columns) in order to obtain a 

(point or block) LDU factorization.  If A is non-singular, then 

there exist permutation matrices P,, P,, Q-, Q2 such that 

AP. , Q.A, Q2AP2 ^ave (point or block) LDU factorizations (cf. 

Forsythe and Moler [1], p. 36). 

In Sections 2 and 3 we show that by employing pivoting 

we can use Strassen's fast matrix multiplication algorithm to 

obtain the LU, or LDU, decomposition of any non-singular matrix 

,' 
\ 
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of order n - 2      in < (3.64)n g2  operations, and hence its 

inverse in < (10.18)n og2  operation, where an operation is 

defined to be a multiplication, division, addition, or subtrac- 

tion. 

In Section 4 we modify the algorithm so that we can find 

triangular factorizations in < (2.04)n 0^2      operations and 

inverses in < (5.70)n 092   operations when n = 2 .  Then, 

for arbitrary n, we can find triangular factorizations in 

< (3.07)nAo927 operations and inverses in < {7.46)nAog27 

operations. 

■ 
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2.  THE BASIC ALGORITHM 

For simplicity, let M be of order n = 2  with detM^O. 

Let M = M. We shall construct a sequence P , P , ..., Pn~ 

of permutation matrices so that M = L^P, i.e. MP~ = W,  where 

P = P P  •*• Pn~  is a permutation matrix, L = L L  ••• Ln~ 

is \init lower triangular, U is upper triangular, and 
n i -1   i 

det M = (det P) det U = ± n u. . .  Since  (P ) ^ = P  here, 
i=l 11 

P-1 = P11"1 ... P2 P1, and 

M"1 = P-W1 = P«-1...?^-1^-1)-1 ... (LVW)-1, 

where  (L1)"1 = 21 - L^ 

We define the algorithm sequentially for 1 £ i £ n-1 

as follows. 

Let B. = {j: i^l, i=ik_. 
»k-1.. ,k-2 +i^  .2* <6+...+i12

J-+ift2
u}; Lk-2 

let t « mcix{j:j t B.} , s = min{j:j ^ B.}, and r 
3 D 

ft if Sfit 

~ \ t-1 if s=t 

Then M i-1 
L11 12

      | 

0 
M22 

LM21 

.i-1 , where M,,  is a non-singular 

upper triangular matrix of order i-1, M^~ is (i-l)x{n-i+l), 

0 is the {2r+1-i+l)x(i-l) zero matrix, M^1 is (n-2r+1)x(i-l), 

Mio is (n-i+l)x(n-i+l), and M1" is non-singular. 
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Since 2  -i+1 > 0 and M ~  is non-singular, there 

exists a non-zero element in the first row of M-Z • Hence 

there exists a permutation matrix P1 such that N = M1"" P1, 

n^. ^0 , and N1 can be partitioned as: 

N1 = 

'i\ V 

I E1!   F1 
r--:T -• 

0 I G1 L   H1 
f      

i '       i 

.1 . , where U1 is (i-2s)x(i-2s) , V1 is 

(i-2s)x(n-i+2s)/E
1 and G1 are 2sx2s, F1 and H1 are 2sx(n-i)/ 

0 is the (2r+1-i+2s)x(i-2s) zero matrix, X1 is (n-2r+1)x(i-2s), 

and Y1 is (n-i-2s)x(n-i+2s) .  Further, Ü1 and E1 are non- 

singular upper triangular. 

Let Z1 = Gi(Ei)"1 and L = 

fm                        | 

Ii-2S ol 

0 

l2.l o 

f jvij 1 0 

where I. is the identity matrix of order j. 

Define M1 = (L1)"1 N1.  Then 

M1 « 

rjii L X I 

, where J1 = H1 - Z1 F1 . 

At the last step U = Mn'  is non-singular and upper tri- 

angular. 
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3.  OPERATION COUNT. 

Finding the permutation P  requires at most n-i compari- 

sons, and if P., = 0 then the permutation involves n element 

interchanges.  Hence at most n(n-l)/2 comparisons and at most 

n(n-l)  element interchanges are required to obtain M = LUp. 

The computation of M~  would require at most an additional 

n(n-l)  element interchanges. 

Let an operation be a multiplication, division, addition, 

or subtraction. Let M(n), M(r(n), and IT(n) be the number 

of operations required to multiply two nxn matrices, to multiply 

an nxn matrix by an upper triangular nxn matrix, and to invert 

an nxn non-singular upper triangular matrix (we shall ignore 

lower order terms). Then M(l) = 1 and M(2 ) = 7    for 

k>l.  Since M(T,(2
k) = 4M_(2k'1) + 2M(2k"1) + 22k"1 and 

"" k-1 
IT{2

k) « 2 IT(2
k"1) + 2 MT(2

k"1) , MT(2
k) = 2  Z  4jM(2k"j"1) 

<   (i|)7k and IT(2
k) -22  2j MT(2

k"3":L) < Cj|)7k. 

Inverting all the    Ü      for    1 <  i < n-1    requires 

k^l k-1 ^ 
,k-l   V-    1       _   ,5j.    . 5k-l   ,28.    V    t1^  <   t1A\'>^t2\1     -   r28^7k 

j=0 £ j=0 ^ 

operations.     Forming all the multipliers    Z1    for    1 <  i < n-1 

k-1 

requires    2k"1     ^  "j M^)  1  0^)1^    operations.    Forming all 
j=0 2 

the reduced matrices J  for l<i<n-l requires 
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k-1 

M2h     l22(k-l)     J] pi 
23 3-0 

»' 2^    ^     ^j  ,  722k   ^k   ^   =   ^   ^ 

j=0 

Hence,   for    n = 2     ,  triangular factorization requires 

<   (~-c) 7    =  3.64n    "2    operations. '25' 

Inverting U requires < (J-H-) 7  operations and U~ L~ 

k-1 k-1 

quires 2*     I  *$[ . ^  2*    V ^    < 
j=o j«0 

3*    -   '   3' 
/7x_2k .7^ ,4.   /14v_k 
(^)2   (-J-)  (7) = (—5-) 7 operations. 

Hence, for n = 2 , inversion requires (-||)7 < (lO.lBjn40927 

operations. 

If M is a non-singular matrix of order n, where 

2k < n < 2k+1, then let e///= M ® I k+1  . We can find the 
2       -n 

triangular factorization of a permutation oft/H,  and hence of a 

permutation of M,  by <   (|^)7k+1 =   (^)7k <   {25.48)nS'og27   , 

and the inverse ottyH,  and hence of M,  by <   (--H^)7        = 75' 
(^i)7k <   (71.22)n£o^7

1 

■ 
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4.  A MODIFIED ALGORITHM 

We can modify the algorithm in Section 2 so that the 

coefficient of n '2  is smaller in the operation counts 

of Section 3.  In particular, we find m and k such that 

the number of operations is minimized subject to the con- 

straint n < m 2  , 

First,   let n » 2r = m 2k.  Then m » 2r"k = 2s , 

and M(2r) < (5+2m)m27k = f (s)7r , where f(s) - (5+2m)m27's = 

(5+2s+1)22s7"s.  Since min f (s) = f (3) = iH , we take 
0<s<r ** 

m =  8,  k = r-3,  and use regular multiplication and inversion 

for  8x8 matrices.    Then    M(2r)   <   (-?|)7r    for    r ^ 0     (rather 

than    M(2r)  £  (7)7r    in Section  3).     Hence each coefficient 
1  192 in Section 3 is multiplied by    v'^nr) • 

Triangular factorization requires < f^yH^  <   t2-04)11^0927 

operations,   and inversion requires     <   ^"jv^jr^^1 <   (5.70)n    ^2   , 

Now let    n    be arbitrary.     Taking    k =  Uog2n-4]     and 

m    ■   [n2'k]+l     (cf.   [3]), we have    n < m2k    and     (5+2m)m27k < 

(4.7)n£o927. 
k-1 

Now    MT{m2k)   < 2(5+2ra)m27k'1   V     {-)*  < |(5+2m)m27k 

j=0 

and    IT(m2k)   < ^T(5+2m)m27k"1   V    (|)j  < I^(5+2m)m27k. 

fit 
49      2 k 

Triangular factorization thus requires < CT-(5+2m)m 7 < 

(3.07)n 92  operations, and inversion requires < —BT-(5+2m)m 7  < 

(7.46)nIog27 operations. 
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5.  REMARKS. 

As seen above, the coefficient of n 0^2  is very 

sensitive to the implementation of the algorithm. Another 

modification of the algorithm might reduce the coefficient. 

Further, the bounds we have given on the coefficient are 

pessimistic. 

The algorithm as stated in Section 2 and 4 may not 

be numerically stable since we cannot guarantee that the 

elements in the reduced matrices are bounded. However, 

there may be a modification of our algorithm which guarantees 

stability; this question deserves further investigation. 

If a fast matrix multiplication algorithm were given 

for multiplying two matrices of order u in v multiplica- 

tions, then algorithms similar to those in Sections 2 and 4 

could find the triangular factorization of a permutation 

of any non-singular matrix, and hence the inverse of any 

non-singular matrix, in < c n 0^uv operations. The algorithms 

would be expressed in terms of the expansions of integers 

modulo u. 
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